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Abstract

A microarchitecture is described that achieves high
performance on conventional single-threaded pro-
gram codes without compiler assistance. To obtain
high instructions per clock (IPC) for inherently se-
quential (e.g., SpecInt-2000 programs), a large num-
ber of instructions must be in flight simultaneously.
However, several problems are associated with such
microarchitectures, including scalability, issues re-
lated to control flow, and memory latency.
Our design investigates how to utilize a large mesh

of processing elements in order to execute a single-
threaded program. We present a basic overview of
our microarchitecture and discuss how it addresses
scalability as we attempt to execute many instruc-
tions in parallel. The microarchitecture makes use
of control and value speculative execution, multi-
path execution, and a high degree of out-of-order
execution to help extract instruction level paral-
lelism. Execution-time predication and time-tags for
operands are used for maintaining program order. We
provide simulation results for several geometries of
our microarchitecture illustrating a range of design
tradeoffs. Results are also presented that show the
small performance impact over a range of memory
system latencies.

1 Introduction

A number of studies into the limits of instruction level
parallelism (ILP) have been promising in that they
have shown that there is a significant amount of par-
allelism within typical sequentially oriented single-
threaded programs (e.g., SpecInt-2000). The work
of Lam and Wilson [8], Uht and Sindagi [18], Gon-
zalez and Gonzalez [4] have shown that there exists
a great amount of instruction level parallelism (ILP)
that is not being exploited by any existing computer

designs. Unfortunately, most of the fine-grained ILP
inherent in integer sequential programs spans several
basic blocks. Data and control independent instruc-
tions, that may exist far ahead in the program in-
struction stream, need to be speculatively executed
to exploit all possible inherent ILP.

A large number of instructions need to be fetched
each cycle and executed concurrently in order to
achieve this. We need to find the available program
ILP at runtime and to provide sufficient hardware
to expose, schedule, and otherwise manage the out-
of-order speculative execution of control independent
instructions. Of course, the microarchitecture has to
also provide a means to maintain the architectural
program order that is required for proper program
execution.

We present a novel microarchitecture in this pa-
per that can be applied to any existing ISA. Our mi-
croarchitecture is targeted at obtaining substantial
program speedups on integer codes. The microar-
chitecture can speculatively execute hundreds of in-
structions ahead in the program instruction stream
and thus expose large amounts of inherent ILP. We
use multipath execution to cover latencies associated
with branch mispredictions. We also take advantage
of control and data independent instructions through
our use of execution-time predication. Since we pro-
vide local buffering (a form of L0 caching) throughout
our grid layout, we can satisfy a large number of ac-
cesses without accessing higher levels of the memory
hierarchy. Further, since our design utilizes a form
of value speculation on all operands, we consume the
present value of a register, even if an outstanding load
is pending which targets this register.

1.1 Related Work

There have been several attempts at substantially
increasing program IPC through the exploitation of



ILP. The Multiscalar processor architecture [15] at-
tempted to realize substantial IPC speedups over con-
ventional superscalar processors. However, the ap-
proach is quite different than ours in that Multiscalar
relies on compiler participation where we do not. A
notable attempt at realizing high IPC was done by
Lipasti and Shen on their Superspeculative architec-
ture [9]. They achieved an IPC of about 7 with re-
alistic hardware assumptions. The Ultrascalar ma-
chine [6] achieves asymptotic scalability, but only re-
alizes a small amount of IPC due to its conservative
execution model. Nagarajan et al proposed a Grid
Architecture of ALUs connected by an operand net-
work [11]. This has some similarities to our work.
However, unlike our work, their microarchitecture re-
lies on the coordinated use of the compiler along with
a new ISA to obtain higher IPCs.
The rest of this paper is organized as follows. Sec-

tion 2 reviews the critical elements of our proposed
microarchitecture. Section 3 presents simulation re-
sults for a range of machine configurations, and shows
the potential impact of multipath execution when ap-
plied. We also discuss how our microarchitecture re-
duces our dependence on the memory system by pro-
viding a large amount of local caching on our datap-
ath. We summarize and conclude in section 4.

2 The Microarchitecture

We have described most of the details of this microar-
chitecture in [19]. We will review these details at a
level to allow the reader to grasp a general under-
standing as it applies to the memory system perfor-
mance. In addition, this paper presents a microar-
chitecture with a realistic memory subsystem and we
therefor are better able to evaluate the performance
impact of the memory hierarchy.
The microarchitecture is very aggressive in terms

of the amount of speculative execution it performs.
This is realized through a large amount of scalable
execution resources. Resource scalability of the mi-
croarchitecture is achieved through its distributed na-
ture along with repeater-like components that limit
the maximum bus spans. Contention for major cen-
tralized structures is avoided. Conventional central-
ized resources like a register file, reorder buffer, and
centralized execution units, are eliminated.
The microarchitecture also addresses several issues

associated with conditional branches. Spawning al-
ternative speculative paths when encountering con-
ditional branches is done to avoid branch mispredic-

tion penalties. Exploitation of control and data inde-
pendent instructions beyond the join of a hammock
branch [3, 17] is also capitalized upon where pos-
sible. Choosing which paths in multipath execution
should be given priority for machine resources is also
addressed by the machine. The predicted program
path is referred to as the mainline path. We give ex-
ecution resource priority to this mainline path with
respect to any possible alternative paths. Since al-
ternative paths have lower priority with respect to
the mainline path, they are referred to as disjoint
paths. This sort of strategy for the spawning of dis-
joint paths results in what is termed disjoint eager

execution (DEE). We therefore refer to disjoint paths
as simply DEE paths. These terms are taken from
Uht [18].
Time-tags are the basic mechanism used in the mi-

croarchitecture to order all operands, including mem-
ory operands, while they are being used by instruc-
tions currently being executed. Time-tags are small
values that are associated with operands that serve as
both an identifying tag and as a means to order them
with respect to each other. The Warp Engine [2] also
used time-tags to manage large amounts of specula-
tive execution, but our use of them is much simpler
than theirs. Time-tags are present on some recent
machines (e.g., P6, Pentium 4), though are used for
different purposes than as employed in our microar-
chitecture.

2.1 Microarchitecture Components

Figure 1 provides a high-level view of our microar-
chitecture. Our microarchitecture shares many basic
similarities to most conventional machines. The main
memory block, the L2 cache (unified in the present
case), and the L1 instruction cache are all rather sim-
ilar to those in common use. Except for the fact
that the main memory, L2 cache, and L1 data cache
are all address-interleaved, there is nothing further
unique about these components. Our L1 data cache
is similar to most conventional data caches except
that it also has the ability to track speculative mem-
ory writes using a store buffer. Our L1 d-cache shares
a similar goal with the Speculative Versioning Cache
[5] but is simpler in some respects. Since we allow
speculative memory writes to propagate out to the
L1 data cache, multiple copies of a speculative write
may be present in the L1 data cache store buffer at
any time. They are differentiated from each other
through the use of time-tags.
The i-fetch unit first fetches instructions from i-



branch
predictors
and
instruction
load
buffers

 L1  
I-cache

execution 
window

 L1  
D-cache

 L2  cache

main  
memory

I-fetch

Figure 1: High-level View of the Distributed Microar-

chitecture. Shown are the major hardware compo-
nents of the microarchitecture. With the exception
of the execution window block, this is similar to most
conventional microarchitectures

.

cache along one or more predicted program paths.
Due to our relatively large instruction fetch band-
width requirement, we allow for the fetching of up to
two i-cache lines in a single clock. Instructions are
immediately decoded after being fetched. All fur-
ther handling of the instructions is done in their de-
coded form. Decoded instructions are then staged
into an instruction dispatch buffer so that they are
available to be dispatched into the execution window
when needed. The execution window is where our
microarchitecture differs substantially from existing
machines. This instruction dispatch buffer is orga-
nized so that a large number of instructions can be
broadside loaded into the execution window in a sin-
gle clock. The multiple buses going from the i-fetch
unit to the execution window in Figure 1 are meant
to reflect this operation. The maximum number of
instructions dispatched into the execution window at
a time (in a single clock) is termed the column height
of the machine.

2.2 The Execution Window

Figure 2 shows a more detailed view of the execution
window with its subcomponents. We have extended
the idea of the reservation station [16] to provide the
basic building block for a distributed microarchitec-
ture. In our microarchitecture, an output result is not
looped back to the input of the same reservation sta-
tion that provided the result but rather is forwarded
to different stations that are spatially separated, in
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Figure 2: The Execution Window. Shown is a layout
of the Active Stations (AS) and Processing Elements
(PE) along with some bus interconnections to imple-
ment a large, distributed microarchitecture. Groups
of ASes share a PE; a group is called a sharing group.

silicon or circuit board space, from the first. This
operation is termed operand forwarding. Our adap-
tation of the reservation station is termed an active
station (AS). Like a reservation station (or an issue
slot for machines that have an issue window), an AS
can only hold a single instruction at a time. How-
ever, instructions may be issued from the AS to its
associated execution unit multiple times rather than
only once. Several ASes may share the use of one
or more execution units. The execution units that
are dispersed among the ASes are termed processing
elements (PEs). Each PE may consist of an unified
all-purpose execution unit capable of executing any of
the possible machine instructions or, more likely, con-
sist of several functionally clustered units for specific
classes of instructions (integer ALU, FP, or other).
Instructions execute speculatively without necessar-
ily waiting for their correct operands to arrive. Re-
executions of instructions occur as needed to guaran-
tee proper program dependencies. An instruction re-
mains in the AS, possibly executing many times, until
it can be retired (either committed or squashed).

As part of the strategy to allow for a scalable
microarchitecture, we lay the ASes out in silicon
on a two-dimensional grid whereby sequentially dis-
patched instructions will go to sequential ASes down
a column of the two-dimensional grid of ASes. The
use of a two-dimensional grid simply allows for a de-
sign implementation in either a single silicon IC or
through several suitable ICs on a multi-chip module.



The number of ASes in the height dimension of the
grid is the same as the column height of the machine,
introduced previously. The example machine of Fig-
ure 2 has a column height of six (six instruction load
buses shown feeding six ASes).
Groups of active stations, along with their associ-

ated PE, are called a sharing group (SG), since they
share execution resources with the set of ASes in the
group. The example machine of Figure 2 consists of
two columns of SGs, each with two SG rows. Sharing
groups somewhat resemble the relationship between
the register file, reorder buffer, reservation stations,
and function units of most conventional microarchi-
tectures. They have a relatively high degree of bus
interconnectivity amongst them, as conventional mi-
croarchitectures do. The ASes serve the role of both
the reservation station and the reorder buffer of more
conventional machines. The transfer of a decoded in-
struction, along with its associated operands, from
an AS to its PE is isolated to within the SG they
belong to. The use of this execution resource sharing
arrangement also allows for reduced interconnections
between adjacent SGs. Basically, only operand re-
sults need to flow from one SG to subsequent ones.
In our present microarchitecture, we always have

two columns of ASes within a SG. The first AS-
column is reserved for the mainline path of the pro-
gram and is labeled ML in the figure. The second
column of ASes is reserved for the possible execution
of a DEE path and is labeled DEE in the figure.
In this machine example, each SG contains three

rows of ASes (for a total of six) and a single PE.
Many machine sizes have been explored so far but
only a subset of these sizes is further investigated in
this paper. A particular machine is generally charac-
terized using the 4-tuple:

• sharing group rows

• active station rows per sharing group

• sharing group columns

• number of DEE paths allowed

These four characteristic parameters of a given ma-
chine are greatly influential to its performance, as ex-
pected, and the 4-tuple is termed the geometry of the
machine. These four numbers are usually concate-
nated so that the geometry of the machine in Figure
2 would be abbreviated 2-3-2-2.
When an entire column of ASes is free to accept

new instructions, generally an entire column worth
of instructions are dispatched in a single clock to the
free AS-column from the instruction dispatch buffer.

Conditional branches are predicted just before they
are entered into the instruction dispatch buffer. The
prediction of a branch then accompanies the decoded
instruction if and when it might be dispatched.

Also employed within the execution window is a
scheme to dynamically predicate, at execution time,
all instructions that have been dispatched into active
stations. This predication scheme essentially provides
for each dispatched instruction (now in an AS) an ex-
ecution predicate. These execution predicates are just
a single bit, but are entirely maintained and manip-
ulated within the microarchitecture itself, not being
visible at the ISA level of abstraction.

From actual VHDL implementation and synthesis
of the described machine components, and using the
technology design rules used in the EV8 micropro-
cessor [12], an estimate of the size of a machine in
silicon can be made. It is estimated that an 8-4-8-8
geometry could be implemented in about 600 mil-
lion transistors. When just considering the execution
window of the machine (Figure 2), most of the silicon
space (as might be expected) is taken up by execution
resources, labeled as PEs, with floating point execu-
tion being particularly large. Components, such as
the ASs, are relatively small. The amount of cache
in the MFUs is flexible and usually takes up the next
most amount of space after the execution units. A va-
riety of larger sized machines could be implemented
in silicon (as transistor budget allows) or in multichip
modules.

2.3 Operand Forwarding and Machine

Scalability

An interconnect fabric is provided to forward result
operands from earlier ASes (in program ordered time)
to later ASes. Result operands are one of three pos-
sible types: register, memory, and instruction execu-
tion predicates. The interconnect allows for arbitrary
numbers of sharing groups to be used in a machine
while still keeping all bus spans to a fixed (constant)
length. All of the buses in Figure 2, with the excep-
tion of the instruction load buses, form the intercon-
nection fabric. Several bus arrangements are possi-
ble but we only further explore one such arrangement
(that shown in the figure). In the general case, sev-
eral buses are used in parallel to make up a single
forwarding span. This is indicated by the use of the
bold lines for buses in the figure. More than one bus
in parallel for each bus span is generally required to
meet the operand forwarding bandwidth needs of the



machine.

Active bus repeater components are used (and re-
quired) to allow for constant length bus spans. A bus
repeater component is generally termed a forward-
ing unit (FU) and is so labeled in the figure. These
forwarding units do more than just repeat operand
values from one span of a bus to the next. For regis-
ters and memory, operands are filtered so that redun-
dant forwards of the same value (as compared with
that last forwarded) are eliminated. These can also
be termed silent forwards. This filtering provides a
means to reduce the overall bandwidth requirements
of the forwarding interconnection fabric. Each for-
warding unit employed in the present work also has a
small amount of storage for memory operands. This
storage serves as a cache for memory operand values.
We term this small cache storage a L0 data cache. In
the present design, the L0 data cache is fully asso-
ciative, containing 32 entries, and resides within the
memory filtering unit. There is one memory filtering
unit per column in the models evaluated in this pa-
per. We also include data that is snarfed 1 off the bus
on a bus snoop and L0 data cache hit. The entire bus
structure serves as a local caching network.

For register and predicate operands, values that are
generated by ASes contend for one of the outbound
buses (labeled shared operand forwarding buses in the
figure) to forward the value. Requests for bus use
will be satisfied with any bus clock-slot that may be
available on any of the buses in parallel, belonging to
a given span. All other ASes on the outbound bus
span snoop operand values forwarded from previous
(in program order) ASes. In addition, a forwarding
unit (the bus repeater) also snoops the same operands
and forwards the operand value to the next bus span
if necessary (if the value was different than the previ-
ous value). For register and predicate operands, they
are also looped around from the bottom of one col-
umn of SGs to the top of the next column of SGs.
Operands from the bottom of the far right column
of SGs gets looped around to the top of the far left
column. Memory operands also utilize the same loop
structure. This behavior forms the characteristic ring
pattern of operand flow, inherent in many microar-
chitectures [13]. Forming a closed loop with these
buses, and essentially just renaming columns (iden-
tifying the one closest to retirement), is easier than
physically transferring (shifting) the contents of one
column to the next when a column of ASes retires.

1Snarfing implies we snoop a bus, find a match on the cur-

rent bus contents, and we read the associated data value.

For memory operands, a second operand forward-
ing strategy is used. When memory operands are
generated by ASes, the AS contends for one of the
outbound buses (labeled shared operand forwarding

buses in Figure 2) in order to forward the operand
value. However, unlike the register and predicate
operand forwarding strategy, a memory load requests
(without data) travels backwards, in program ordered
time, and gets snooped by the forwarding units that
are at the top of each SG column. This is done so
that the operand can be transferred onto a memory
operand transfer bus, shown at the top of Figure 2.
These buses are address-interleaved and provide the
connectivity to transfer memory operands (generally
speculative) to the L1 data cache. Memory values
are tentatively stored in a store buffer, along with
their associated operand time-tags, until a commit-
ted value is determined. Similarly, operands return-
ing from the L1 data cache to service requests from
ASes are first put on one of the memory operand
transfer buses (based on the interleave address of the
operand). These operands then get snooped by all of
the forwarding units at the top of each SG column,
after which the operand is forwarded on a shared
operand forwarding bus (shown vertically) to reach
the requesting ASes.

Persistent register, predicate state and some persis-
tent memory state is stored in the forwarding units.
Persistent state is not stored indefinitely in any sin-
gle forwarding unit but is rather stored in differ-
ent units as the machine executes column shift op-
erations (columns of ASes get retired and commit-
ted). However, this is all quite invisible to the ISA.
This microarchitecture also implements precise ex-
ceptions [14] similarly to how they are handled in
most speculative machines. A speculative exception
(whether on the mainline path or a DEE path) is
held pending (not signaled in the ISA) in the AS that
contains the generating instruction until it would be
committed. No action is needed for pending excep-
tions in ASes that eventually get squashed. When
an AS with a pending exception does commit, the
machine directs the architected control flow off to an
exception handler through the defined exception be-
havior for the given ISA. This might include saving
the precise instruction return address to either an ISA
architected register or memory. Typically, the excep-
tion handler code will save the architected registers to
memory using normal store instructions of the ISA.
Interrupts can be handled in more flexible ways than
exceptions. One way to handle interrupts is to allow



all instructions currently being executed within the
execution window to reach commitment, then archi-
tected program flow can vector off to a code handler,
similarly as the case of instruction exceptions above.

2.4 Enforcing Program Order and De-

pendencies

Program dependencies (control, register, and mem-
ory) are maintained through the use of time-tags.
Time-tags are associated with all operands within
the machine. This has some resemblance to reg-
ister tags used in more conventional microarchitec-
tures but has been more generalized for use in this
distributed microarchitecture. Since instructions re-
main in the ASes until they retire, the whole set of
ASes fulfill the role of the reorder buffer or register
update unit of more conventional microarchitectures.
As a column of ASes gets retired, that column be-
comes available for newly decoded instructions to be
dispatched to it. The time-tag, associated with each
column, is decremented. Time-tags associated with
operands can be decomposed into row and column
parts. The column part of the operand time-tag is
identically the column time-tag, so when a column
has its time-tag decremented, it effectively renames
the operands within that column. The next column
in the machine (with the next higher time-tag) be-
comes the next column that will get retired. The
operation of decrementing column time-tags in the
execution window is termed a column shift. The hard-
ware used for the snooping of an input operand of an
AS is shown in Figure 3. Basically, a new operand is
snarfed when it has the same address and path identi-
fier as the current AS as well as a time-tag value that
is less than that of the current AS itself but greater
or equal to that of the last snarfed operand. Sim-
pler snooping hardware is used in forwarding units.
A more detailed discussion of the mechanism used
for enforcing program dependencies can be found in
a report by Kaeli et al [7].

2.5 Multipath Execution

If a conditional backward branch is predicted taken,
the i-fetch unit will speculatively follow it and con-
tinue dispatching instructions into the execution win-
dow for the mainline path from the target of the
branch. This case allows for the capture of program
loops within the execution window of the machine
and can be thought of as hardware loop unrolling. For
a backward branch that is predicted not-taken, we

LD
pathtime-tag value instr.

time-tag

=

address

=>= <!=

LD LD

execute or re-execute

tt addr value path tt

tt addr value

result operand forwarding bus 

Figure 3: Operand snoop logic within an AS. The
logic used for snooping of input operands for ASes is
shown.

continue dispatching instructions following the not-
taken output path. If a forward branch has a near
target such that it and its originating branch instruc-
tion will both fit within the execution window at the
same time, then we dispatch instructions following
the not-taken output path of the branch, whether
or not it is the predicted path. This represents the
fetching of instruction in the memory or static or-
der rather than the program dynamic order. The
fetching and dispatching of instructions following the
not-taken output path (static program order) of a
conditional branch is very advantageous for captur-
ing hammock styled branch constructs. Since, simple
single-sided hammock branches generally have near
targets, they are captured within the execution win-
dow.

Our mainline path continues along the predicted
branch path, regardless of whether it was the taken
or not-taken path. We spawn a DEE path for the op-
posite outcome of the branch. For forward branches
with a far target, if the branch is predicted taken,
we dispatch instructions following the target of the
branch. If the branch is predicted not-taken, we con-
tinue dispatching instructions for the mainline path
following the not-taken outcome of the branch. In
both of these cases, we do not spawn a DEE path for
this branch.

DEE paths are created by dispatching instructions
to a free column of ASes that is designated for holding
DEE paths. The instructions dispatched as a DEE
path will be the same instructions that were previ-
ously dispatched as being the mainline path, where
both the mainline and DEE paths share the same
generating conditional branch. However, there are a
limited number of AS columns available at any one
time for DEE paths in the machine so some strategy



Table 1: Characteristics of benchmarks programs.
benchmark bzip2 parser go gzip gap

br pred acc 90.5% 92.6% 72.1% 85.4% 94.5%
L1-I hit rate 97.2% 96.6% 92.4% 94.7% 89.0%
L1-D hit rate 98.8% 99.0% 98.8% 99.8% 99.3%
L2 hit rate 90.1% 86.0% 96.8% 73.0% 88.5%
dyn cond brs 12.0% 11.0% 12.1% 13.4% 6.5%

for spawning DEE paths is needed. Refer to [19] for
a full description of our spawning algorithms.

3 Simulation Results

We first describe our simulation process. Then IPC
data for multipath execution is given. Finally, results
showing the sensitivity of our machine to varying the
latencies of several components in the memory hier-
archy are presented.

3.1 Methodology

The simulator is a recently built tool that shares some
similarity to SimpleScalar [1] but which was not based
on it. We execute SpecInt-2000 and SpecInt-95 pro-
grams on a simulated machine that primarily features
a MIPS-1 ISA but with some MIPS-2 and MIPS-3
ISA instructions added. We are using the standard
SGI Irix system libraries so we needed to also support
the execution of some MIPS-2 and MIPS-3 instruc-
tions (present in the libraries). All programs were
compiled on an SGI machine under the Irix 6.4 OS
and using the standard SGI compiler and linker. Pro-
grams were compiled with standard optimization (-O)
for primarily the MIPS-1 ISA (-mips1).

We chose five benchmark programs to work with,
four from the SpecInt-2000 benchmark suite and one
from the SpecInt-95 program suite. These programs
were chosen to get a range of different memory and
looping behavior, while also presenting challenging
conditional control flow behavior. The particular
programs used along with some statistics are given
in Table 1. All programs were executed using the
SpecInt reference inputs. All accumulated data was
gathered over the simulated execution of 500 million
instructions, after having skipped the first 100 mil-
lion instructions. The first 100 million instructions
were used to warm up the various simulator memory
caches. The dynamic conditional branches in Table
1 are a percent of total dynamic instructions.

Table 2: Machine geometries studied.
SG rows ASes per SG SG columns max DEE paths

8 4 8 8
8 8 8 8
16 8 8 8
32 2 16 16
32 4 16 16

3.2 IPC Results

In this section, we present IPC data for multi-path
execution, as executed on five machine geometries.
The parameters of each of the major machine com-
ponents, for each of the five simulated geometries,
are given in Table 2. Although we have explored a
large number of machine sizes, these particular ge-
ometries were chosen in order to get a range of IPC
performance across a number of very different ma-
chine sizes and shapes. The common machine char-
acteristics used in this section for obtaining IPC re-
sults are given in Table 3. The L1, L2, and main
memory access latencies do not include the forward-
ing unit and forwarding bus delays within the execu-
tion window. These machine characteristics are fairly
representative of existing typical values for a 2 GHz
processor. They are similar to, or more conservative
than, a recent Pentium-4 (0.13 um at 2.4 GHz) pro-
cessor [10]. The results for multipath execution are
presented in Table 4. The geometry labels (4-tuples)
at the tops of these tables consist of the concatenated
numbers of machines components for: SG rows, AS
rows per SG, SG columns, and the number of DEE
paths allowed for that execution. In addition to the
individual benchmark IPC results, we also present
the harmonic mean of the IPC across all benchmarks.
From these results, it is observed that our DEE mul-
tipath execution mode provides between 39 and 50
percent IPC speedups over conventional singlepath
execution. Our lowest performing machine geometry
(8-4-8-8) when executing in singlepath mode, yielded
a harmonic mean IPC of 3.2. However, the same ge-
ometry machine, when executing using the the DEE
multipath strategy, yielded a harmonic mean IPC of
4.8 (a 50% speedup). The largest sized machine ge-
ometry simulated (32-4-16-16) using singlepath exe-
cution yielded a harmonic mean IPC of 4.6. Our DEE
multipath execution of the same yielded a harmonic
mean IPC of 6.5 (about a 41% speedup). The low-
est IPC speedup occurred for the machine geometry
16-8-8-8 and was about 39%. This geometry had the
lowest speedup from multipath execution because its



Table 3: General machine characteristics. These machine parameters are used for all simulations as the
default except where one of these parameters may be varied.

L1 I/D cache access latency 1 clock
L1 I/D cache size 64 KBytes
L1 I/D block size 32 bytes
L1 I/D organization 2-way set associative
L2 cache access latency 10 clocks
L2 cache size 2 MBytes
L2 block size 32 bytes
L2 organization direct mapped
main memory access latency 100 clocks
memory interleave factor 4
forwarding unit minimum latency (all) 1 clock
forwarding-bus latency (all) 1 clock
number of forwarding buses in parallel 4
branch predictor PAg

1024 PBHT entries
4096 GPHT entries
saturating 2-bit counter

Table 4: IPC results for multipath execution.
geometry 8-4-8-8 8-8-8-8 16-8-8-8 32-2-16-16 32-4-16-16

bzip2 4.2 5.0 5.8 5.4 5.7
parser 4.3 4.6 5.3 5.0 5.4
go 5.1 5.9 6.7 6.5 6.8
gzip 5.0 6.3 7.0 6.7 7.2
gap 6.0 7.5 7.5 8.9 7.9

HAR-MEAN 4.8 5.7 6.4 6.3 6.5
% speedup over SP 50 46 39 50 41

ratio of AS rows (128) to the maximum possible DEE
paths allowed (8) was the lowest of the geometries ex-
plored.

3.3 Memory Sensitivity Results

In this section we present IPC data corresponding to
varying some parameters associated with the memory
subsystem. We show degradation in IPC when vary-
ing the access latencies, in clocks, for: L1 D-cache,
L2 cache, and main memory. All of this data was
gathered on a machine geometry of 16-8-8-8 with the
other parameters (the parameters that are not var-
ied) listed in Table 3. All results are relative to the
fastest hit latency for that level of the memory hier-
archy. Figure 4 presents IPC degradation results as
the L1 D-cache hit latency is varied from one to eight
clocks. IPC is lowered by as much as 46% when the
L1 hit latency is increased from 1 to 8 cycles. But
because of the introduction of L0 caches in our filter
units, the number of L1 cache accesses is significantly
reduced. Also, the good news is that a latency of 1
or 2 clocks for L1 caches is more likely to scale bet-
ter with increasing processor clock rate than memory
components further from the processor. So we can
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Figure 4: Machine IPC speedup results for varying
L1 D-cache hit delay in clocks.

anticipate an impact of up to 10% if we move from 1
to 2 clocks.

Figure 5 presents the IPC degradation results as
the L2 cache (unified I/D) hit latency is varied from
1 up to 16 clocks (our design choice was 10 clocks).
Finally Figure 6 presents the IPC speedup results as
the main memory access hit latency is varied from
20 clocks up to 800 clocks. For the L2 cache and
main memory sensitivity graphs, the impact on IPC is
much less severe than what was experienced with L1.
Although L2 latencies are likely to also scale some-
what with future increasing processor clock rates,
they are not likely to scale as well as L1 is expected
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Figure 5: Machine IPC speedup results for varying
L2 cache hit delay in clocks.
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Figure 6: Machine IPC speedup results for varying
main memory access latency in clocks.

Table 5: L0 hit rates for bzip2 and parser. All per-
centages are relative to the total number of loads is-
sued. Results are for a 16-8-8-8 machine geometry.

bzip2 parser

% of all loads 3.6% 5.2%
satisfied by L0 due
to a backwarding request
% of all loads 18.2% 28.8%
satisfied by L0 but w/o
any backwarding request

to do. Fortunately our machine already obtains good
IPC numbers for an L2 latency of 10 clocks.
With respect to main memory, the microarchitec-

ture is quite insensitive to latencies up to 100 clocks,
and only then starts to degrade slightly after that.
Since 100 clocks (as we count it - after our repeater
and bus delays) is probably typical at the present
time (assuming a 2 GHz CPU clock rate and the
latest DDR-SDRAMs), our memory system arrange-
ment is properly hiding most of the long main mem-
ory latency as it should. Since our machine is still
quite insensitive to main memory latency out to 800
clocks, we might expect to operate the current ma-
chine up to about 10 GHz with similar performance.
Our insensitivity to main memory latency is due to
both the conventional use of L1 and L2 caches but
also to the width of our execution window. When
memory load requests are generated from instructions
soon after they were loaded into the execution win-
dow, the width of the machine (in SG columns) pro-
vides substantial time to allow for those memory load
requests to be satisfied, even when they have to go
back to L1, L2, and to main memory.

3.4 L0 Cache Results

In Table 5 we show L0 hit rates for two of the pro-
grams. We breakdown L0 accesses/hits as those due
to loads that generated a backward-going request and
those due to load values being forwarded to the AS
without the L0 receiving a forwarding request. On
each load, we send out a backward-going request to
both L0 and L1. As we can see, L0 is servicing a large
percent (34% for parser) of all load requests. This will
reduce the impact of memory latency on IPC. In fu-
ture work we will look at the effects of increasing the
amount of buffer memory in the filter units.
We have also run experiments modeling a perfect i-

cache (100% hit, 1 cycle) and measured the effects of
using d-cache (L1/L2) with hit times of (1/10) cycles
for an optimized design and (8/16) cycles for a slower



memory system. As we scale the size of the microar-
chitecture geometry, the impact of the increased hit
times diminishes with increased machine size. We are
presently looking at the effect of L0 and L1 d-cache
organizations and their impact on IPC for large ma-
chine geometries.

4 Conclusions

We have presented the overview of a large-scale
distributed microarchitecture suitable for extracting
high ILP from sequential programs. This microarchi-
tecture is designed to also implement speculative mul-
tipath execution. We presented results for the ma-
chine executing in multipath mode versus singlepath
mode. It was shown that multipath execution pro-
vides IPC performance speedups over singlepath ex-
ecution from 39 to 50 percent. We also showed that
our microarchitecture exhibits significant insensitiv-
ity to a wide range of memory system component
latencies. This is due to the use of a large architec-
ture, load value and address speculation, and the use
of distributed L0 data caches within the microarchi-
tecture.
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